Dalian Dongfu Color Display Co., Ltd.

APPROVAL SHEET

Customer	:	
Part Name	:	LCD MODULE
Model NO.	:	EDM240128-02
Drawing NO.	:	
Approved by	:	
Date	:	2003. 08. 04

1.	Scope2
2.	Warranty2
3.	Features2
4.	Dimensional outline5
5.	I/O terminals6
6.	Handling precautions22
7.	Precaution for use24
8.	Appendix24

1. Scope

This manual defines general provisions as well as inspection standards for LCD module supplied by Dalian Dongfu Color Display Co., Ltd.

If the event of unforeseen problem or unspecified items may occur, please contact the nearest supplier or our company for solution.

2. Warranty

If module is not stored or used as specified in this manual, it will be void the 12 months warranty.

3. Features

3-1. Features:

Display Mode:	Transflective and positive type				
l	Yellow-green mode STN LCD				
Display Color:	Display Dots: Black				
l	Display Dots: Black Background: Yellow-green				
Display Format:	240(w)×128(h) full dots				
Input Data:	8-bits parallel data interface from a MPU				
Multiplexing Ratio:	1/128 Duty				
Viewing Angle:	6 o'clock				
Display RAM Capacity:	32k byte S-RAM (built-in)				
Controller Type:	HD61830 (built-in)				
CG ROM/RAM Capacity	y: Built-in 128 words character generator (CG) ROM.				

3-2. Mechanical Specifications:

Item	Specifications		
Dimensional Outline	144.0(W)×104.0(H) ×14.5Max.	mm	
Number of Dots	240(W) ×128(H) Dots	_	
Number of Observations	40C \times 16L(640) in case of 6 \times 8 Fonts		
Number of Characters	$30C \times 16L(480)$ in case of 8×8 Fonts		
Viewing Area	114.0(W)×64.0(H)	mm	
Active Area	107.95(W)×57.55(H)	mm	
Dot Pitch	0.45(W)×0.45(H)	mm	
Dot Size	0.4(W)×0.4(H)	mm	
Weight	Approx.	g	

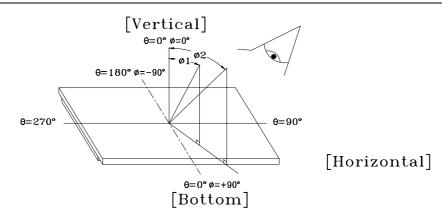
3-3. Absolute Maximum Rating

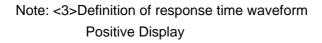
- 2 -

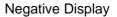
lte	m	Symbol	Min.	Max.	Unit	Note
Supply	Logic	Vdd	0	6.5	V	Vss=0V
Voltage	LCD drive	Vdd – Vee	0	26	V	
Input Voltage	Input Voltage		0	Vdd	V	Vss=0V
Operating Temperature		Тор	-20	70	°C	
Storage Temperature		Tstg	-30	85	°C	

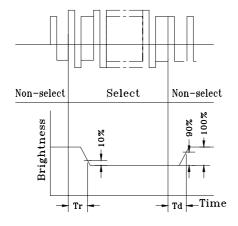
3-4. Electrical Characteristics:

Note:	<1> Duty =1/128		<2> All dots o				
lte	Item		Conditions	Min.	Тур.	Max.	Unit
Supply	Logic	Vdd		4. 5	5.0	5.5	
Voltage	LCD drive	Vdd-Vee			21.0	_	V
Input	"H" Level	Vih	Vdd=5V \pm 5%	0.7Vdd		Vdd	v
Voltage	"L" Level	Vil		0		0.3Vdd	
Frame F	requency	Fflm	Vdd=5V	60	70	80	Hz
Current	Logic	ldd	Vdd=5V Vdd–Vee=20.0V		3.0	5.0	
Consumption	LCD drive	lee	Fflm=75Hz		2.0	3.5	
			Ta= -10℃ Φ=0°, θ=0°	_	22.1	_	
LCD Driving Voltage (Recommended Voltage)		Vdd-Vee	Ta= 25°C φ=0°, θ=0°	20.0	21.0	21.7	V
			Ta= 60°C φ=0°, θ =0°	19.2	20.3		

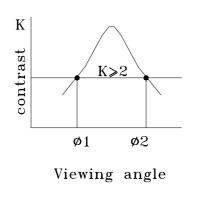

3-5. Electro-optical Characteristics:

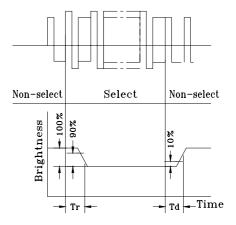

lte	m	Symbol	Temp.	Conditions	Min.	Тур.	Max.	Unit	Note	
	a a Valta a a		-10 ℃			22.1	23.0			
	ng Voltage ded voltage)	Vop	25 ℃	$\Phi = \! 0^{\circ}$, $\theta = \! 0^{\circ}$	20.0	21.0	21.7	V	1,2,5	
(Recommen	deu vollage)		60° C		19.2	20.3	—			
Response	Rise Time	tr	0 °C		—	1500	2000			
Time		tr	u	25 ℃	$\Phi = \! 0^\circ$, $\theta = \! 0^\circ$		150	200	mS	1,3,5
	Decay	td	0 °C			3000	3500			
	Time	เน	25 ℃			200	250			
Viewie			2€ °⊖	Vertical	-35	_	35	dog	1 4 5	
Viewing Angle		Δφ	25 ℃	Horizontal	-30	_	30	deg.	1,4,5	
Contra	st Ratio	К	25 ℃	$\Phi = 0^{\circ}$, $\theta = 0^{\circ}$	2.0	5.0	_		1,5,6	

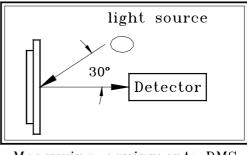

Note: <1> Definition of ϕ and θ


<2> Contrast ratio higher than 2 (k≥2) can be obtained in this voltage range.

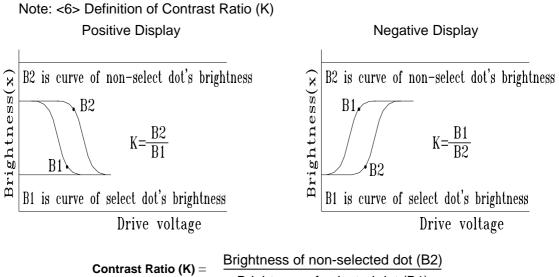
- 3 -







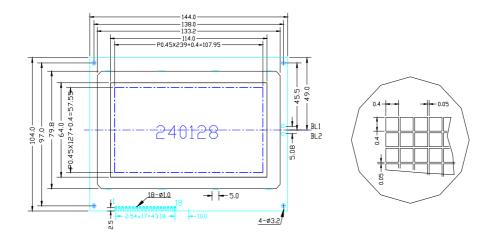
Note: <4>Definition of viewing angle ($\Delta \Phi$) $\Delta \Phi = |\Phi 1 - \Phi 2|$


Note: <5> Optical measuring system temperature regulated chamber

Measuring equipment: DMS (Made in AUTRONIC)

Dalian Dongfu Color Display Co.,Ltd.

- 4 -


Brightness of selected dot (B1)

3-4-2. Specifications for LED backlight

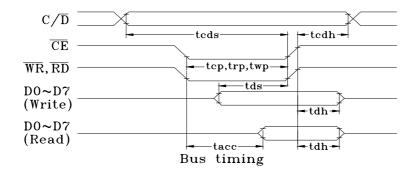
Item	Unit	Sta	ndard Va	lues	Conditions		
nem	Unit	Min.	Тур.	Max.	Conditions		
Supply Voltage	V		4.2	_			
Initial Brightness	cd/m ² (nit)		55	_	_		
Current	mA/cm ²	_	_	_	—		
Life time	Hrs		10000				
Luminous Color	_	Yellow green		en	_		
Operating Temp.	°C	-20 ~ 60		-20 ~ 60			
Storage Temp.	°C	-30 ~ 70			_		

4. Dimensional Outline

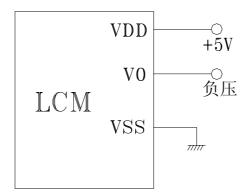
- 5 -

5. I/O terminals

5-1. I/O Connection


Pin No,	Symbol	Function
1	Vss	Signal ground (GND)
2	Vdd	Power supply for logic (+5V)
3	V0	LCD Driving Voltage
4	RS	R/W="L";RS="H": Command write, RS="L": Data write
-		/RD="L";RS="H": Command read, RS="L": Data read
5	R/W	Data write (Active at "L")
6	E	Chip enable for the module (Active at "L")
7~14	D0~D7	Data Bus (D0=LSB, D7=MSB)
15	/CS	Chip selection.
16	/RES	Controller reset (Module reset, active at "L")
17	LED+	Backlight(+5V)
18	LED-	Backlight

5-2. Signal Timing Diagram:


ltem	Symbol	Condition	Min.	Max.	Unit		
C/D set-up time	tcds	Vdd=5V \pm 5%	100		ns		
C/D hold time	tcdh	Vss=0V	10				
- 6 -							

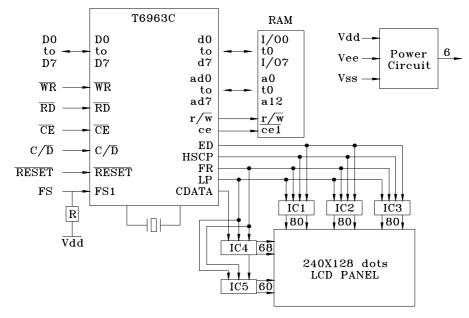
User's Manual

CE,RD,WR pulse width	tcp,trp,twp	Ta=25 ℃	80	_	
Data set-up time	tds		80	_	
Data hold time	tdh		40		
Access time	tacc			150	
Output hold time	toh		10	50	

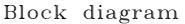
5-2. Example of Power Supply

Note: There is an end on the potentiometer for regulating contrast ratio.

5-4. Circuit Block Diagram


Dalian Dongfu Color Display Co.,Ltd.

The circuit block diagram is shown in the following figure. The LCD module needs two power sources: Vdd for logic and Vee for LCD drive.


Note: It is necessary to guard all signals from external noise as signal lines are directly connected to C-MOS and are not pull-up or pull-down internally.

5-5. Application features of module:

- (1) This module can be directly connected to 8080MPU or Z80MPU.
- (2) This module can be set to display in combined display of graphic and text (Contents of the text area and of the graphic area are displayed on the screen simultaneously by mode set.) and in attribute display of text mode.
- (3) MPU can access the DDRAM at any time in the mode of byte / bit operation.
- (4) Character Font: 6×8 dots or 8×8 dots
- (5) A status check must be performed before data or command are read or written.
- (6) Both the column/line counter and display register are cleared by RESET. (Other registers are not cleared.) DDRAM is kept intact. Disable the display using the clear-display register. After power on, it is necessary to reset by software.
- (7) By the hardware setting, display columns are defined 40 characters long,

LCD controller

- 8 -

Dalian Dongfu Color Display Co., Ltd.

maximum transferable amount of data every line.

- (8) Display lines are defined 128 by hardware setting.
- (9) This module has a 128-word character generator ROM (see appendix), and allocation of external character generator RAM can be made easily in DDRAM.
- (10) DDRAM can be allocated to text area, graphic area and external character area. The text home address and the graphic home address correspond to the display bit on the top left corner of the LCD panel. In 6 \times 8 dot matrix, one byte in the text area corresponds to a character on the screen. One byte in graphic area corresponds to 6×1 dot matrix on the screen (The lower 6 bits of a byte are valid).
- (11) Cursor display mode is on only in the text mode and what is displayed is the logic OR of cursor and the character where the cursor is.
- (12) For some commands that need operand data, it is important to send the operand data first and then the command code.
- (13) Text Attribute mode is only applicable in text mode. (In this case, text mode and graphic mode should both be on.)
- (14) The relationship between Text Area and display position in LCD panel is shown below:

ТН	TH+1	 TH+CL
TH+TA	TH+TA+1	 TH+TA+CL
(TH+TA) +TA	(TH+TA) +TA+1	 TH+2TA+CL
(TH+2TA) +TA	(TH+2TA) +TA+1	 TH+3TA+CL
TH+15TA	TH+15TA+1	 TH+15TA+CL

Note: TH: the text home address

TA: the width of text area (number of characters /line), to be defined by user. CL: number of characters/line set by hardware, the CL of this module is 40.

(15) The relationship between Graphic Area and display position in LCD panel is shown below:

GH (DB7~DB0)	GH+1	 GH+CL
GH+TA	GH+TA+1	 GH+TA+CL
(GH+TA) +TA	(GH+TA) +TA+1	 GH+2TA+CL
(GH+2TA) +TA	(GH+2TA) +TA+1	 GH+3TA+CL
GH+127TA	GH+127TA+1	 GH+127TA+CL

Note:

- 9 -

GH: the graphic home address

TA: the width of graphic area (number of characters /line), to be defined by user.

CL: number of characters/line set by hardware, the CL of this module is 40.

- Note: In Text mode or Graphic mode, when TA≠CL, the relationship between the valid display area of the LCD panel and DDRAM address is detailed in 5-6-2.
- 5-6. Commands

The command of this module may have one operand datum, or two operand data or none). It is important to send the data first, and then to send the command code. If the number of the operand data is more than specified, the last are valid. The status check must be performed every time before the data and commands are read or written.

The status word format is as follows:

STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0	
STA0: c	heck cor	nmand e	ty 1	: enable	0: dis	sable		
STA1: c	heck dat	a read/w	1	: enable	0: dis	sable		
STA2: c	heck aut	o mode o	data read	d capabili	ity 1	: enable	0: dis	sable
STA3: c	heck aut	o mode o	data write	e capabil	ity 1:	enable	0: dis	sable
STA4: n	ot used							
STA5: c	heck cor	ntroller op	peration	capability	/ 1	: enable	0: dis	sable
STA6: e	rror flag.	Used for	r screen	peek and	d screen	copy cor	mmands	
					1:	error	0: no	error
STA7: c	heck the	blink co	ndition		1: norma	l display	0: disp	lay off

Note:

- 1. It is necessary to check STA0 and STA1 at the same time. There is a possibility of erroneous operation due to a hardware interrupt.
- 2. For most modes STA0/STA1 are used at a status check.
- 3. STA2 and STA3 are valid in auto mode; STA0 and STA1 are invalid.
- 4. STA6 is valid in screen peek and screen copy mode.
- 5. STA5 and STA7 mirror the interior operational status.

5-6-1. Registers Setting, the format is as follows: D1,D2

0 0 1 0 0 N2 N1 N0	i i	<u> </u>		<u> </u>					
		0	0	1	0	0	N2	N1	N0

D1, D2 is the first and the second parameters respectively, and the last byte is command code. According to the values of N0, N1, N2, this command has three meanings.

D1	D2	Code	Function
X Address (lower 7 bits are valid)	Y Address (lower 5 bits are valid)	21H (N0=1)	Set cursor pointer
Address	00H	22H (N1=1)	Set offset register

User's Manual

			0001 0	manuu					
(lower 5 b	its are valid)								
Low	Low address High address 24H (N2=1) Set address pointer								
A、 Set	Set cursor pointer: D1 stands for the horizontal distance (number of								
cha	characters) of cursor to the top left corner of the real LCD panel. D2 stands								
for t	for the vertical distance (number of character lines). Setting and changing								
	the cursor position must be performed through resetting the cursor pointer.								
	The cursor pointer is not related to address pointer and has no auto								
	change function.								
		•		0		CGRAN	I's 16 bit addres		
	DRAM. The				M is:				
		C4 C3	C2 C1						
	r. Code:			D7	D6 D5 D	4 D3 D	-		
Line Adrs : +) R2 R1 R0									
Actual Adrs.: A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0									
	R2~R0: represent one line of the self-designed 8X8 dots characters.								
	When the internal CGROM mode is set in mode set, the character code								
	allocated to external character generator is 80H~FFH. When the external								
	CGROM mode is set in mode set, the character code allocated to the								
external character generator is 00H~FFH. For example: when allocate the units of 1800H~1FFFH (2K) in DDRAM to									
CGRAM, the offset register could be set to #03H. Thus, the address of									
character whose code is 80H in DDRAM is 1C00H~1C07H.									
B、 Set address pointer: set the unit address of DDRAM to be accessed. D1									
and D2 are the low address and high address of the unit address									
respectively.									
5-6-2. Control word setting, the command format is as follows: D1, D2									
C	1	0	0	0	0	N1	N0		
	•	•			•	•			
Accord	ng to differe	nt values	of N1 ar	nd N0, t	his comm	and ha	s four functions:		

N1	N0	D1	D2	Code	Function
0	0	Low adrs.	High adrs.	40H	Set text home address
0	1	Columns	00H	41H	Set text area (number of characters/line)
1	0	Low adrs.	High adrs.	42H	Set graphic home address
1	1	Columns	00H	43H	Set graphic area (number of characters/line)

The text home address corresponds to the character position on the top left corner of display panel. The graphic home address corresponds to the byte position on the top left corner of display panel. The text area (number of characters/line) set and graphic area (number of characters/line) set are used to adjust the width (column) of valid display screen. The width indicates the

- 11 -

number of character or the number of bytes can be validly displayed. Define the width of display screen to be CL by hardware and the width of display screen to be TA by this command, then the relationship between text area and its corresponding position on LCD panel is shown as follows:

(a) when TA<=CL: (TH stands for the text home a	address)
---	----------

ТН	 TH+TA-1	
TH+TA	 TH+2TA-1	Blank

 \leftarrow ------ TA valid display screen ------ \rightarrow

TH		TH+CL-1		TH+TA-1		
TH+TA		TH+TA+CL-1		TH+2TA-1		
			do	o not transfer		
← CL valid display screen						

The way in which the graphic area corresponds to its position in display screen is similar to the way in which the text area corresponds to its position in display screen. The only difference is that in graphic area one byte corresponds to 8 bits graphic data.

If the graphic area is defined to be the same number of characters/line of LCD, the home address of every line equals to end address of the previous line +1.

5-6-3. Mode setting, the format of command is as follows: no parameter

	1	0	0	0	N3	N2	N1	N0
NIO			aanarat	or mode				

N3: select character generator mode

N3=1, select CGRAM and the character code is 00~FFH.

N3=0, select internal CGROM. Since the character code of CGROM is 00~7FH, when take 80H~FFH as character code, CGRAM is automatically selected.

N2~N0: Combined-display mode setting. The functions are shown below:

N2	N1	N0	Means of Combination
0	0	0	"OR" mode
0	0	1	"EXOR" mode
0	1	1	"AND" mode
1	0	0	Text attribute mode

Only when the text mode and graphic mode are both on, the combined display mode and text attribute mode settings are valid. After the text attribute setting,

- 12 -

the graphic area will be converted into text attribute area and store the text attribute codes. The text attribute area is of the same size as text area. In addition, the text attribute codes of the character codes in text area are stored in the same address of graphic area. Every byte in the graphic area determines the feature of its corresponding character, including the normal display, reverse display, inhibit display, blink of normal display, blink of reverse display and blink of reverse display of characters. In the text attribute area, the text attribute codes of characters are made up with a byte's low four bits.

D	7 D6	D5	D4	D3	D2	D1	D0
*	*	*	*	d3	d2	d1	d0

d2~d0 :

d2	d1 d0		Function		
0	0 0		Normal display		
1	0	1	Reverse display		
0	1	1	Inhibit display		

To work in the text attribute mode, the user could build an independent area in the DDRAM as text attribute area. In this case, the graphic home address should be converted into the text attribute home address, and thus keep the data in the previous graphic area. DDRAM could be divided as follows:

Graphic area
Text attribute area
Text area
CGRAM (2K)

5-6-4. Display mode setting, the format of command is as follows: no parameter

1 0 0 1 N3 N2 N1 N0

N0: 1/0, cursor b	link on/off
-------------------	-------------

N1: 1/0, cursor display on/off

N2: 1/0, text display on/off

N3: 1/0, graphic display on/off

5-6-5. Cursor pattern select, format is shown as below: no parameter

1 0 1 0 0 N2 N1 N0

The cursor pattern in 8 dots(segment) \times N(line). The value of N is in the range of 1 line to 8 lines (00H~07H).

5-6-6. Data auto read/write mode: no parameter

	1	0	1	1	0	0	N1	N0
--	---	---	---	---	---	---	----	----

Using this command, MPU could continuously read/write the data in DDRAM without inputting the read/write command every time. The address pointer is automatically increased by 1 after each datum. The Auto reset

- 13 -

command must be sent after all data have been sent, to clear Auto mode. N1 and N0 function as below:

N1	N0	Code	Function			
0	0	B0H	Set data auto write			
0	1	B1H	Set data auto read			
1	*	B2H/B3H	Auto reset			
oto roor	1/writa m	ada tha far	mat is shown holow:			

5-6-7. Data read/write mode, the format is shown below: D1,										
	1	1	0		0	0	N2	N1	N0	
	D1	N2	N1	Ν	0	Code	function			-
Data 0 Data 0			0	С)	C0H	Data write, ADP+1 Data read, ADP+1 Data write, ADP-1			
			0	1		C1H				
	Data 0			С)	C2H				
		0	1	1		СЗН	Data read, ADP-1			
Data 1		0	С)	C4H	Date write, same AI			P	
— 1			0	1		C5H	Date read, same AD			Ρ
5-6-8. Screen peek, the				rm	at of cor	mmand is	s as follo	ws: no p	aramete	r
	1	1	1		0	0	0	0	0	

This command is used to transfer 1 byte of displayed data positioned by current address pointer to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by this command. The address pointer should be set in graphic area.

5-6-9. Screen copy, the format of command is as follows: no parameter

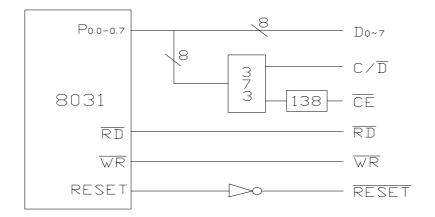
|--|

The command copies a single raster line of data positioned by the address pointer (in graphic area) to the corresponding area in the graphic area. If the attribute function is being used, this command is not available.

5-6-10. Bit set/reset: no parameter

1	1	1	1	N3	N2	N2	N0
This co	mmand	ie ueod	to sot o	r rocot r	hit of t	ha hyta	spacifics

This command is used to set or reset a bit of the byte specified by the address pointer.


N3=1, set; N3=0, reset. N2~N0 corresponds to the D0~D7 bit.

5-7. Module and MPU connection

MPU uses data bus and control lines to control the module by means of direct storage access or I/O access. Interface circuit is shown in following diagram:

MPU: 8031

- 14 -

Data bus of 8031 is connected directly to the data bus of module. RD and WR of 8031 act as the read/write control signal of module. CE can be decoded by address bus. For example: output Y0 of IC 138 as CE. (When test the module independently, CE could be grounded directly.) Output A0 of 8031 address bus as C/D. A0=1 stands for the address of command; A0=0 stands for address of data. Each Subprogram is as follows:

(1) Status read

Registers to be used: R0, A;		output register: A	store status
BF:	MOV R0, #01H	; address of commar	nd
	MOVX A, @ R0	; read status	
	RET		

Relevant subprograms could be derived from above-mentioned program:

a. Subprogram of STA0 and STA1 status check, Before the command write and data write and read, STA0 and STA1 should both be defined to be "1":

BF1: LCALL BF

JNB ACC.0, BF1	; STA0 status check
JNB ACC.1, BF1	; STA1 status check
RET	

b. Subprogram of STA2 status check, STA2 should be checked between reading of each datum. STA2=1 should be confirmed before each reading during the continuous reading.

BF2: LCALL BF

JNB ACC.2, BF2

;STA2 status check

- 15 -

	REI	
Similarly	, subprogram of STA3 sta	tus check is listed as follows:
BF3:	LCALL BF	
	JNB ACC.3, BF3	; STA3 status check
	RET	

c. After the screen peek and screen copy commands, the STA6 status should be checked. STA6=0 indicates that the commands are correctly performed. For example:

BF6:	LCALL BF	
	JB ACC.6, ERR	; STA6 status check
	RET	
ERR:	•••••	; error disposal program

(2) subprogram of writing command and data

register to be used: R0, R2, R3, R4, A:

input register: R2 is the first parameter, R3 is the second parameter, R4 is the command code

WR:	LCALL BF1	: entrance of double parameter command
	MOV A, R2	
	LCALL WR4	
WR1:	LCALL BF1	; entrance of single parameter command
	MOV A, R3	
	LCALL WR4	
WR2:	LCALL BF1	; entrance of no parameter command
	MOV A, R4	
	SJMP WR5	
WR4:	MOV R0, #00H	; entrance of writing data
WR5:	MOVX @ R0, A	
	RET	

This program is generally used. When entering data and single parameter commands, the data and commands should be sent into R3. The entrance of subprogram is WR4 and WR1 respectively. The entrance of no parameter command is WR2.

 (3) subprogram of data writing register to be used: R0, A; output register: A store data RD: LCALL BF1

> MOV R0, #00H MOVX A, @ R0

> > - 16 -

RET

5-8. Example of Application Program

The precondition is FS=0, that is, choose the 8X8dots.

5-8-1.	Subprogr	am of clearing DDRAM	
	CLR:	MOV R2, #00H	; RAM address=0000H
		MOV R3, #00H	
		MOV R4, #24H LCALL WR	; set address pointer
		MOV R4, #0B0H	: set data auto write
		LCALL WR2	, set data auto whic
		MOV R2, #1FH	; auto write 8K byte
	CLR1:	·	
	CLR2:	LCALL BF3	; check status STA3
		CLR A	
		LCALL WR4	; write 00H
		DJNZ R3, CLR2	
		DJNZ R2, CLR1 MOV R4, #0B3H	: auto reset
		LCALL WR2	, auto reset
		RET	
5-8-2.		gram of Initialization	
	INI:		
		MOV R2, #00H	; set text area
		MOV R3, #00H MOV R4, #40H	
		LCALL WR	
		MOV R2, #1EH	
		MOV R3, #00H	
		MOV R4, #41H	
		LCALL WR	
		MOV R2, #00H	; set graphic area
		MOV R3, #08H	
		MOV R4, #42H	
		LCALL WR MOV R2, #1EH	
		MOV R2, #TEH MOV R3, #00H	
		MOV R4, #43H	
		LCALL WR	
		MOV R4, #80H	; set display mode
		- 17 -	

LCALL WR2 MOV R4, #94H ; text on LCALL WR2 RET

The following is an example which is to display "!" in the top left corner of the screen.

LCALL INI MOV R2, #00H MOV R3, #00H MOV R4, #24H LCALL WR MOV R3, #01H MOV R4, #0C0H LCALL WR1 RET

5-8-3. Set CGRAM

Set offset register content

(1) Set the matrix data and character codes of the characters. For example, the Chinese character "北", choose the character codes between 80H and FFH, then the matrix data and character codes of the character "北" are defined as follows:

Structure of "北"		matrix data	character code
Top left	04H, 04H,	04H, 04H, 04H, 7CH, 04H,	04H 80H
Bottom left	04H, 04H,	04H, 04H, 1CH, E4H, 44H,	00H 81H
Top right	80H, 80H,	88H, 98H, A0H, C0H, 80H,	80H 82H
Bottom right	80H, 80H,	80H, 8CH, 82H, 82H, 7EH,	00H 83H

Write into CGRAM

WRCG:	MOV R2, #03H	
	MOV R3, #00H	
	MOV R4, #22H	; set offset register
	LCALL WR	
	MOV DPTR, #TAB1	; matrix data home address
	MOV R2, #00H	
	MOV R3, #1CH	; CGRAM address
	MOV R4, #24H	; set address pointer
	LCALL WR	
	MOV R4, #0B0H	; set auto write
	LCALL WR2	
	MOV R2, #20H	; number of matrix data
WRCG1:	LCALL BF3	; check status STA3
	- 18 -	

- 18 -

	CLR A
	MOVC A, @A+DPTR ; read matrix data
	LCALL WR4 ; write into CGRAM
	INC DPTR
	DJNZ R2, WRCG1
	MOV R4, #0B2H ; auto reset
	LCALL WR2
	RET
TAB1:	DB 04H, 04H, 04H, 04H, 04H, 7CH, 04H, 04H
	DB 04H, 04H, 04H, 04H, 1CH, 0E4H, 44H, 00H
	DB 80H, 80H, 88H, 98H, 0A0H, 0C0H, 80H, 80H
	DB 80H, 80H, 80H, 80H, 82H, 82H, 7EH, 00H

5-8-4. Chinese Characters Display

Matrix data of Chinese character are in the sequence of top left corner (8 bytes from top to bottom) \rightarrow left bottom left corner (8 bytes from top to bottom) \rightarrow top right corner (8 bytes from top to bottom) \rightarrow bottom right corner(8 bytes from top to bottom).

(1) Display of Chinese Character in Text Mode

In this mode, only 64 Chinese characters with 16X16 dots can be entered as a maximum. (4 character codes for a Chinese character).

The address pointer is already positioned on the top left corner of the character to be entered.

Register to be used: R2, R3, R4, A; input register: R3 (store Chinese character codes)

WRHZT:	MOV R4, #0C0H LCALL WR1	; data write, address+1 ; R3 set in the main program, for example R3=80H
	INC R3 INC R3	
	LCALL WR1	; R3=82H
	DEC R3	; R3=81H
	MOV R2, #1CH	
	MOV R4, #0C1H	; data read, address+1
WRHZT1:	LCALL WR2	
	DJNZ R2, WRHZT1	; move the address pointer to the
		left bottom corner of the
		Chinese character
	MOV R4, #0C0H	
	LCALL WR1	
	- 19 -	

INC R3	
INC R3	; R3=83H
LCALL WR1	
RET	

(2) Display of Chinese character in the graphic mode

This method is to build a Chinese character storage area in the ROM of MPU system, the Chinese character matrix should be input byte by byte in graphic mode.

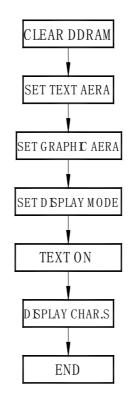
Register to be used: A, R2, R3, R4

DPTR is a home address of one Chinese character matrix array and will be assigned in the main program.

WRHZG:	MOV R2, #10H	; number of cycles
	MOV A, #00H	
WRHZG1:	PUSH ACC	; push code into stack
	MOVC A, @A+DPTR	; read character matrix
	MOV R3, A	
	MOV R4, #0C0H	
	LCALL WR1	
	POP ACC	; pop code from stack
	PUSH ACC	; push code into stack
	ADD A, #10H	; locate the pointer to the matrix of
		the byte on the right
	MOVC A, @A+DPTR	; read character matrix
	MOV R3, A	
	LCALL WR1	
	MOV A, R2	
	MOV R3, A	; R3=R2
	MOV R2, #1CH	; number of cycles
	MOV R4, #0C1H	
WRHZG2:	LCALL WR2	; change the address pointer
	DJNZ R2, WRHZG2	
	MOV A, R3	
	MOV R2, A	; recover R2
	POP ACC	; pop code of stack
	INC A	; code+1
	DJNZ R2, WRHZG1	
	RET	

5-8-5. Application of Text Attribute Mode

Display the character string "WELCOME!" on the top left corner of the screen:


- 20 -

	blink of reverse display:	
		"!", normal display. The subprogram
text attribute co		ter code and TAB3 as corresponding
TCR:	MOV R4, #9CH	;start the text and graphic mode
ICK.	LCALL WR2	,start the text and graphic mode
	-	· toxt attribute made act
	MOV R4, #84H LCALL WR2	; text attribute mode set
	MOV R2, #00H	
	MOV R3, #00H	· oddroop pointer oot
	MOV R4, #24H	; address pointer set
		, number of characters
	MOV R2, #00H	
ICRI.	MOV DPTR, #TAB2	; table of characters
	MOV A, R2	
	MOVC A, @A+DPTR	
	MOV R3, A	
	MOV R4, #0C0H LCALL WR1	
	INC R2	
	CJNE R2, #08H, TCR	1
	MOV R2, #00H	I
	MOV R2, #00H MOV R3, #08H	
	MOV R3, #08H MOV R4, #24H	· address pointer set
	LCALL WR	; address pointer set
	MOV R2, #00H	; number of characters
TCR2:	MOV DPTR, #TAB3	-
TUNZ.	MOV DFTR, #TABS MOV A, R2	
	MOVCA, @A+DPTR	
	MOVER, WATEL TR MOV R3, A	
	MOV R3, A MOV R4, #0C0H	
	LCALL WR1	
	INC R2	
	CJNE R2, #08H, TCR2	2
	RET	2
TAB2:		3H, 2FH, 2DH, 25H, 01H
TAB2. TAB3:		
TAB3: DB 0DH, 0DH, 0DH, 0DH, 0DH, 0DH, 0DH, 0DH,		
5-6-0. Applica	mon Frogram	
For example, to disp	lay "!" on the top left co	orner of the screen, the program is:
ORG 0000H		
STAR:	LCALL INI	; initialize
	MOV R2, #00H	; display "!"
	MOV R3, #00H	
21		

- 21 -

MOV R4, #24H LCALL WR MOV R3, #01H MOV R4, #0C0H LCALL WR1 RET

The flow chart of this program is as follows:

6.Handling precautions

6-1 Mounting method

A panel of LCD module made by Dalian Dongfu Color Display Co., Ltd. consists of two thin glass plates with polarizers that easily get damaged.

And since the module is constructed and fixed by utilizing fitting holes in the Printed Circuit Board (PCB), extreme care should be used when handling the LCD modules.

6-2 Cautions of LCD handling and cleaning

- 22 -

When cleaning the display surface, wipe lightly with soft cloth with solvents (recommended below).

- □ Isopropyl alcohol
- □ Ethyl alcohol
- □ Trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that may damage the polarizer surface.

Do not use the following solvents:

- □ Water
- □ Ketene
- □ Aromatics
- 6-3 Caution against static charge

The LCD module uses C-MOS LSI drivers. So we recommend you:

Connect any unused input terminal to V_{dd} or V_{ss} . Do not input any signals before power turns on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

- 6-4 Packaging
 - A module employs LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity.

6-5 Caution for operation

- It is an indispensable condition to drive LCD module within the limits of the specified voltage since the higher voltage over the limits may cause the shorter life of LCD module.

An electrochemical reaction due to DC (direct current) causes LCD undesirable deterioration so that the uses of DC (direct current) drive should be avoided.

 Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD module may show dark color in them. However those phenomena do not mean malfunction or out of order of LCD module, which will come back in the specified operating temperature.

6-6 Storage

In the case of long time storage, the following ways are recommended:

- To be stored in polyethylene bag with the opening sealed so as to prevent fresh air out. Do not put desiccant into the bag.
- To be placed in a dark place where there is neither exposure to direct sunlight nor light. Keep within the storage temperature range.
- To be stored with no touch on polarizer surface by any thing else.

- 23 -

6-7 Safety

- It is recommended to crash damaged or unnecessary LCD into pieces and to wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off with soap and water at once.

7.Precaution for use

7-1 Both parties should provide a limit sample on an occasion when both parties agree to its necessity.

The judgement by a limit sample shall take effect after the limit sample has been established and confirmed by both parties

- 7-2 On the following occasions, the handling of problem should be decided through discussion and agreement between responsible of the both parties.
 - When a question is arisen in this manual.
 - When a new problem is arisen which is not specified in this manual.
 - -Some problem is arisen due to the change of inspection and operating conditions in users.
 - When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

8. Appendix

Character Code Table

